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DETERMINATION OF THE CONSTITUTIVE COEFFICIENTS
FOR A MIXTURE OF TWO SOLIDS

T. R. STEEL

University of California, Berkeley

Abstract—Using a theory of mixtures allowing different temperatures for each constituent, we first discuss non-
linear constitutive equations for a mixture of two elastic solids. Then, upon specialization, we determine relations
between certain of the material constants related to each constituent and the corresponding constants related to
the mixture. We linearize the constitutive equations by assuming that all displacements from the undeformed
state, and all subsequent temperature changes, are small and we further show how to evaluate the constants
appearing in the linearized constitutive equations, under certain assumptions which are shown to be thermo-
dynamically consistent.

1. INTRODUCTION

THE theory of a mixture of two elastic solids has been considered by several authors,
from various viewpoints (see, e.g. [1]-[6] and the references given therein). In almost all
these approaches the deformations of the solids were assumed small and thermodynamical
considerations were not included.

The physical motivation for considering such a theory is to attempt to describe the
behaviour of certain binary alloys or certain kinds of composite materials.

The major concern when considering a linearized theory of a mixture of two solids is
to try to predict, or predict bounds for, the material constants of the mixture from the
material constants of each constituent separately, with the help of certain simple experi-
ments. Most of the theories given in references [1]-[6] do not include any interaction terms
in the partial stresses, except possibly due to the densities of each constituent.

In this paper we attempt to evaluate the coefficients in a linearized theory of two
isotropic elastic solids, from theoretical considerations and with the help of two simple
experiments. The linearized constitutive equations which we use contain full interaction
terms and we allow small temperature changes.

It is hoped that the theory considered here could be applied to certain heterogeneous
composite materials in which each point of the mixture can be considered as being occupied
by a particle of each solid when considered on a macroscopic scale, as well as to binary
mixtures of continua. In such a material there seems to be no reason why relative motion
of the constituents could not occur (cf. Shewmon [5]) and therefore we allow relative motion
in this work.

In Section 2 we restate the constitutive equations for a mixture of two non-linear
anisotropic elastic solids as derived by Green and Steel [7] using the theory of Green and
Naghdi [8], which considers a single temperature distribution for each constituent. We
also briefly restate the basic equations of the theory of mixtures given by Green and Naghdi
[9] which allows each constituent to have a different temperature. Having done this, we
reformulate the constitutive equations for a mixture of two non-linear anisotropic elastic

1149



1150 T. R. STEEL

solids in the framework of the latter theory in Section 3, and use the corresponding thermo-
dynamical equations to derive the appropriate restrictions upon these constitutive
equations. We thereby obtain the relation between the entropy per unit mass of each con-
stituent and the entropy per unit mass of the mixture in the case when the temperatures
of each constituent are equal.

In Section 4 we consider the linearized equations for a mixture of two isotropic elastic
solids (defined in a natural manner in Mills and Steel [10]), and use the relation obtained in
Section 3 to express certain material coefficients of the mixture in terms of the material
coefficients of each constituent in the mixture.

In Section 5 we consider a mixture of two isotropic solids under certain simplifying
assumptions but still including interaction terms, and we show how, in principle, the
material coefficients occurring in the constitutive equations can be determined by two
simple experiments.

2. BASIC EQUATIONS

We use the same notation as reference [9]. All co-ordinates are referred to fixed rectan-
gular Cartesian axes and Latin indices take the values 1, 2, 3. Greek superscripts between
parentheses take the values 1, 2 and refer to the constituents 1 or 2 respectively. The sum-
mation convention is assumed for repeated Latin indices unless otherwise stated, but any
summation over Greek superscripts will be explicitly shown. The positions of typical
particles of each constituent at time 7 are denoted by x{*(t), where

x() = XAXPXP XP, 1) (o <t<), @D

and X'!¥ is a reference position of the particle of the ath constituent.

The density of each particle is denoted by p!") and p® respectively, and we define
velocity vectors v!®, acceleration vectors f®, rates of deformation tensors di, vorticity
tensors {2’ and the time derivatives moving with each particle, D'?/Dx, in the usual manner
(see e.g. Green and Naghdi [9]). We also define a mean velocity w; and thereby define the
time derivative moving with the mixture, D/Dt. The total mass density is given by
p = p4p@.

An important assumption is that the mixture is heterogeneous, that is, each point in it
is occupied simultaneously by particles of each constituent. In the present notation, this

means that
xe) = xP() = x, (2.2)

and a comma in the following denotes differentiation with respect to x;.
The constitutive equations for a mixture of two non-linear anisotropic elastic solids in
terms of thermodynamic quantities related to the mixture as a whole, are given byt

(2.3)

axty oxt
A=A( { - )

AXD Gx @

t See [7]; the tensors E;; and H,; used there are given by E;; = F\'F\}) and H;; = F{}'F}}\.

A tensor function ¢y, dependent upon the deformation gradients of each solid, can be added to o}’ and sub-
tracted from of?, together with the addition of ¢y, to #(!; see Green and Naghdi [11] where it is shown that such
additions leave, in fact, all field equations and the entropy inequality unaltered. The essential part of the subsequent
work in this paper is therefore unaffected by such additions and we take the constitutive assumption ¢; = 0.
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0A
= 24
2A CA
657’2) P( FS) aF;‘a) Fk! 6F(u)) ’ (25)

2
O-{ll(i] = —G'Eki)l = Dy, (2.6)

0A4 04
Dki p(ij aFU) F(l) )

Y oFD
= —%p(F}CZ’-(—A———F(-;) 04 ) (2.7)
i > .
T GFD T R

0A CA
ml = p'V 5 {grad FiP'h— p'? ——; {grad L+ a0 —of?). (2.8)

3F2 o]
In the above ¥ denotes the partial stress in the ath constituent and 7T'(= — )

denotes the diffusive resistance or diffusive force vector.t A is the Helmholtz free energy
and S the entropy, both per unit mass of the mixture, and T is the temperature of the mixture.
F{?is the deformation gradient tensor for the ath constituent, given by

ox® )
x|

Fo = ( (2.9)

and a,; is a function of the deformation gradients of each constituent and the temperature
of the mixture. Also

{grad FP}, = F&, (2.10)

and parentheses denote the symmetric part of a tensor, square brackets denote the anti-
symmetric part. Equation (2.7), can be shown to be identically satisfied using invariance
requirements under superposed rigid body motions.

We now briefly list the basic equations that we shall need for a mixture of two chemically
inert constituents which are in motion relative to each other and which are allowed to
have different temperatures.t These are

DT DAY
p(1)|:s(1) Y + Y +a.(’“) A ﬂ}‘l)v(l) U;(Z))

(1)
— Bl — @) - q;T"f+\P<”—cb<“zo, (2.11)
p

DT DA?
—p‘z’[ SO ES T | HodR — 0 — )

+P2 0 > 0, (2.12)

2. T
— o - i) -t
pT

1 See [9].
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where A and S* are the Helmholtz free energy and the entropy respectively both per unit
mass of the ath constituent, and T is the temperature of the xth constituent. g, is the heat
flux vector per unit area of the mixture per unit time, and f{’ = — B2, % = — i1,

W= — By = —yp, ¥ and @@ are quantities which occur naturally in the theory.
They satisfy the equations

00+ 70490+ 0 = 0, (2.13)
o+ Ay +HB =0, (2.14)

where 8{V(= —02)) and A(= —A{¥) are the internal force and couple acting on con-
stituent 1 due to interactions (mechanical and thermal). There are two more equations
corresponding to these for the second constituent, but these are redundant when there are
only two constituents.t

We have already used the rate of workequations for each constituent in writing down
(2.11) and (2.12), however we shall not write down the rate of work equations themselves
or the equations of motion, as we shall not use them here. For completeness however, the
reader is referred to Green and Naghdi [9], equations (4.38), (4.39), (3.11), (4.15) and the
boundary conditions are governed by equation (4.32).

The only other equations which we shall need are

DA‘“’ DT®
- | = () (a) (@~ )(a) a)
( +S ) ;{ Dt S "Dt — 0k
— 0 + O -, (2.15)
DS§@®
— = Z{ OT® 5 cp‘a’} , (2.16)

We are now in a position to postulate constitutive equations for a mixture of two
elastic solids allowing each to have a different temperature.

3. CONSTITUTIVE EQUATIONS
(1) (2)

We need to postulate constitutive equations for A, A, S, @ g1 62, B, 47,

D o2 ) @ @t and @2, For completeness we should also postulate a constl-

tutive equation for ¢; but for what we are interested in here this is not necessary. We also

need a constitutive equation for 7'’ which we shall consider later, and a constitutive

equation for the quantity [t;,— p;—n(oki’ —a{?)]1 which helps to determine the dynamic

boundary conditions needed. Since we will not be considering any dynamic boundary
conditions here, we omit this latter constitutive postulate.§ We therefore postulate

1 2)
oxtV oxt

o TOTO) (@ =1,2), (3.1)
FX GX @

A(a) A(a)

+ See [9].

1 For the definition of the terms in this expression, see [9].

§ If relative motion of the constituents occurs, as we have allowed here, then the boundary of the material may
not consist of a heterogeneous mixture; the formulation of the correct boundary conditions then presents some
difficulty. However, in the static problems considered later we have alleviated this difficulty by suitably choosing
our experiments.
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§@ = @ Sﬁ;l’)’g;_g;l), TOTO| (0 =1,2), (32)
o)) = Au+ Au i —v?); ol#) = Bu+ By 0}V — ), (3.3)
B = =B = —bi— BV —0?); P = =l = — =gl - o), (3.4)
B’ = =B = —Bu—Biu S ~0?); W = =W = = — v} — o), (3.5)

YO = 0+t — o8+ o (0 — o) (04 — v{P) + D, DI;;”+D2 DI;:Z)
+ Epdd) + EfdP + Ef {0y — @), (3.6)

YO = —0—a vl — vi?) — o (ot — o) () — )~ D, Dg:“

—-D, D;(2)+G,kd Y+ GudP + Gyl — '), 3.7
o =9, P = 4, (3.8)
A = AP = ;tk,»-l-lk,-l{vg-“——vg-z)), (3.9)

where the coefficients depend on the deformation gradients of each solid, the temperature
of each and possibly upon the temperature of the mixture, and also obey suitable symmetry
conditions,t e.g.

ﬁ;u'j = —ﬁ;kj-

In addition, g{"’ and y{*’ may depend upon second deformation gradients of each solid.
The temperature T of the mixture and the constitutive equations listed above will in general
(for more general mixtures) depend upon the history of the individual temperatures and,
perhaps, of some kinematical variables. Here, however, we restrict ourselves to consider
constitutive equations which depend only on values of the temperatures T, T’ and of the
deformation gradients of the solids at time ¢t. Some dependence upon the history is included
by allowing the coefficients to depend upon T. We restrict ourselves to linear dependence
upon i) — {2, except for the functions Y1), ¥,

Substituting from (3.1)-(3.6) and (3.8) into (2.11), and using (2.9) and the expressions
for DFY/Dt, (x = 1,2),} we obtain an mequahty involving the variables DT!/Dx,
DT‘Z’/Dt db), 4@, o) — o, vtV — !, P’ + '@’ and T, ,, the coefficients of which are
independent of these quantities. By first choosing a temperature distribution for the mixture
which is homogeneous, and then choosing arbitrary values of the remaining variables, we

+ See [9].
1 See Crochet and Naghdi [12], equations (3.6).
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can deduce that
dAY D,

(- _
§ = 6T‘”+ o

aAm

Ay = %P‘”(F}) 6F(H

o 8Am

Ey = Ep(l)(Fg) aF(Z)
p(l) ﬁA(l)

b, = pV
%t O = p l:/—’ aF(z)l

2
g ad th)}k
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aAm
aT(Z)’

AW
+F S - B,

(1)

D, =p

(2)(‘5/1“)
)

)
P

24
- 1)
OF}

{grad F{}’} ]

s | 044 dAM aAm oA
Flat B = 30! ﬂfhaFU» ﬂjﬁF“’ F“&F”) H?GF”
F(l')aA(n W aAm F(Z.)OA(“ A _ o
kj gFD T oFy) ki oF® Y OFR '
Y, T.
Aa; =0, B = (,Bij+Olij)(l’51)_1’52')“’}”_P}Z))~£)—pq7£’;k

s

> 0.

Similarly, substituting (3.1)+3.5), (3.7) and (3.8) into (2.12), we can deduce that

6T‘2’_;—)(7”
p<z>(1:(z)

S22 — _

1
2

1
o o= = g3 FL
le 2 P (F

Bilc =

— o —

_ pm[ﬁ’
p

L
=7kt G = me{(F )

A2
| S

)

— F

ﬁikj =0, "/;u'j =0;

CA®
(2)
Yot

8A(’)
YR

oA

o4
P OFD

(]A(Z)

D, = —p?-
A
TOFD

“)CA(Z)
R’@Fm

o7

) Gk

(2) A2

A® 2A®
’ afv’) (F“ P

U _ 20
(i + o) (08 — {2 (04 —

2
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{grad Fgf)}k—“p— 6F‘” {grad Ff})}k]
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1) (2)
FS] aF(l)) (F"j 5F$‘,2')

A% oA
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Nii )20

e
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pT

L}

5 2)
J (’)Fg)

<.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

It can be shown, by considering invariance requirements under superposed rigid body
motions, that (3.11) and (3.14) are identically satisfied, and using these equations we can

rewrite (3.10), and (3.13), as

, 1 oAn 04w
Buit+Eq = Ep(l)(F’(‘})aF}}’_ 5})31;%) ’
1 4%

ke G = 5o

~F —

aA(Z)

(3.16)
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Using (3.10), (3.12); ,, (3.13), (3.15), ,, and (3.16) in (2.15), and also using equation
(2.13), we get

p(?[%—ys%?)_"llkd“)‘"l;gkd(m ("{“) ﬁkt+})k|)(w(l} (1)5,%)

+ 70 = o) — By @ = o) "= o). (3.17)

We now use an appropriate constitutive equation for 7', and equations (2.14) and (3.9)
to recover the results (2.4)-(2.8) together with

= Bhi— Vi~ Axis )“kij =0, ;= ﬁkj""?/‘kj- (3.18)
Also, using (3.8) in (2.16), we see that
DS DS DS@®
=2 = pOTMH ZE g O 28 3.19
PT o =P T ¢ Dt - (3.19)

The relation between the internal energy of the mixture and the internal energy of
each constituent (Green and Naghdi [9], equation {(4.40)) is satisfied when (3.17)-(3.19) are
satisfied.

When the temperature distribution of each solid is the same, (3.19) reduces to

(1)

Ds

DSV ., DS?
oy +p

2
Dt Dt ’ (3:20)

=p
and we can relate the entropy of the mixture to the entropy of each solid when in the mixture.
Alternatively, if a relation between the entropy functions of each solid and that of the
mixture is assumed, then (3.19) gives a relation between the temperature of the mixture
and the temperature of each solid.

4. LINEARIZED THEORY OF TWO ISOTROPIC ELASTIC SOLIDS

We now consider a mixture of two isotropic elastic solids which are subject to small
deformations and temperature changes. We shall suppose in the following that instead of
occupying the same final position, the particles of each solid under consideration occupy
the same position initially; however, since the displacements of each solid are assumed
small, the theories of Green and Naghdi ([8] and [9]) will still hold. The displacements of
each solid, the temperature changes of each and their space and time derivatives are assumed
small and squares of these quantities are neglected in the expressions for the partial stresses,
diffusive force, etc. A comma now denotes spatial differentiation with respect to the initial
position of each solid ; to our order of approximation this can usually equally well be con-
sidered as spatial differentiation with respect to the final position of either solid.

Because of invariance requirements under superposed rigid body motions and because
of the isotropy of each solid, we can write the free energy functions in the form¥

A= AFLFR)L FRFD.T), Ay = AFRIFR FOFQ. T, Ty),  (a=1,2),
t This follows in a similar manner to that done for a single isotropic elastic solid, see {10] for details; in this

and subsequent sections we write A,, A5, Ty, Tz, py, pa . . . in place of 41, 4D, TH T, 53 and we also
try to be consistent with the notation used previously (see, e.g. [13]).
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where A4, A, A, are isotropic functions of their arguments. Since the displacements and
temperature changes are small, we can therefore write

PA = PA+ 1€+ %28 mm + %30 + X5€,50,5 + X8y s
+ 7€, 8rs & T X8€0rEmm T T00ZrrBimm 30100
+ 01288 mm T 01 3€mm0 + %1 58 1m0,

P1Ay = PrA;+B1Cmmt Bogmmt B30, +Bi02+ Bserseys
+ B68rsrs + B1€158rs + 1B8€rrCrm + 1 BLrrEom
+3B1007 + 381103 + B12€0Lmm + B13€mm01 + Braemmbs ¢ (4.1)
+B158mm0 1+ B168mmO2 + B170102,

P2Az = P2 A +71Cnmt 7 28mm+ 7301 + 7402+ 7550
+768rs8rs 1 7€rs8rs + 278CrrCmm + 5798 Zmm + 771001
+371103 + 71260 8mm + 7 13€mmD1 + 7 14Cmmb2 + 71 58mmb1

+716&mmb2+ 7170107,

where e,,, g, are the usual linearized strain tensors for solid 1 and solid 2 respectively,t
0, and 0, are the temperature changes of the two particles under consideration and a bar
denotes the value of the variable in the initial position. The coefficients are material con-
stants (which depend on the initial values of the densities and temperatures, assumed
homogeneous).

From (2.5}2.8), using (4.1), we have

5
ol = 00+ 2(a; +os)ey + a8y + (“8 —;1 0‘1) ComOik

+ (0‘12—% °‘1)gmm5ik+°‘1395ik,

- P -
oli) = “zoik+2(“2+a6)gik+°‘7eik+(%—”} 0‘2)gmm‘)ik
p 4.2)

+ (0‘12—% 0‘2) CmmOik + %1 500,

() 2) _
Ol = —0lih = 0,

_ay_ P1 P2 1_ (2
TE;‘ )= Eangm,k—_l;alemm,kd}_a(ua )_U}c )’

where « is another material constant.

+ For the definition of these, see [13], equations (4.4) and (8.3).
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Also, if we now suppose that each solid has the same temperature distribution, then
from (3.10), (3.13) and (3.20), using (4.1), we find that

00 0€pm 08m o0
i P {ﬂxo+?10+511+)’11+2(.317+“/’17)}“6;

0epm

ot

O mm
ot

+(Bi3+viatBratviatys—B4) +(Bis+ris+Bietrie— 73+ B4)

We can therefore deduce that
a0 = PBrotYiotBii+rii+2B17+719) ay3 = PratriatBiatyiatys—Ba,

dis = Brs+yis+Bie+7ie— 73+ P (4.3)

5. DETERMINATION OF THE STRESS-STRAIN COEFFICIENTS

We now assume that in the initial position there are no partial stresses, so that (4.2)
yields?

o) =0 = AiCpnmOu+ 21 €0+ A38mmOu+ 21380+ 213004, 5.0)

0% =03 = AZmmOun+ 2U28ik+ A3€mmOin+ 21365 + 01 500,

{I

where 4, u,, etc. are suitably defined in terms of a5, o, etc.

We further assume that the only interaction terms in these relations are those involving
Ay and p3; thus 4, 4, and 4,, u, are the Lamé elastic constants for solids 1 and 2 respec-
tively when separated, and if x, = A, +%u,, x, = 4, +%u, are the bulk moduli of each
solid, then

A3 = — 014y, Ays = — 0343, (52)

where o, and g, are the volume coefficients of thermal expansion for solids 1 and 2 respec-
tively. It can be seen from (4.1) and (4.3) that these assumptions are consistent with, e.g.,
the assumption that the free energy of each solid is unchanged on mixing, but allow more
generality.

Other authors have made similar assumptions, usually of a more restrictive nature.
In the literature on composite materials it is customary to assume relations of the form
(5.1) in the absence of thermal effects, exclude interaction so that 25 = u; = 0, consider a
mean strain tensor which in the notation of this paper is defined through

Pei; = pre;i+ 028

and, in addition, make further assumptions regarding relationships between the ‘“‘partial
strains” and the mean strain ¢;;. Such additional assumptions, if acceptable or applicable
in particular applications, will enable one to write an expression for the total stress of the
form

t; = Newdy+2ue;;, (5.3)
t Notice that although the diffusive force 7\"’ is now zero in static problems, there is still mechanical interaction

between the solids due to the interaction terms in the partial stresses. Furthermore, the diffusive force will be non-
zero in dynamical problems.
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where A, i/ are related to 4, 45, f1,, i3, §1. P, and coeflicients which are brought in through
the relationships between ¢;; and the “‘partial strains™ mentioned above.

A number of authors, using results of this form for the isothermal case, have proposed
bounds on the “overall” coefficients 4’ and p'. Here, it is not our purpose to follow the
line of argument pursued previously in the literature ; instead in the rest of this section we
confine our attention toward a more direct evaluation of the coefficients which occurin (5.1).

Under the assumptions previous to (5.2) then, we examine the material coefficients
appearing in (5.1).

In the experiments which follow there may be difficulties if the moduli of each solid
were to change on mixing. However, we have explicitly assumed here that the elastic and
thermal moduli of the solids when mixed are the same as when separate, the only difference
when mixed being the addition of interaction terms. The experiment involving thermal
expansion requires the measurement of the change in volume of the mixture, which may
not be possible; however, the mean displacement of the mixture as used in this paper is
exactly that which is assumed in the theory of composite materials to be the actual displace-
ment observed when deforming an alloy (see, e.g. Hill [2]) hence the term “overall” moduli
used in these theories.

If we raise the temperature of a unit of volume of the mixture by one degree while
keeping it free of applied stresses, then by definition the volume change of the mixture (per
unit volume) is equal to the volume coefficient of thermal expansion for the mixture.
Since the total mass is conserved, the change in volume of the mixture per unit volume is
equal and opposite to the change in density of the mixture per unit mass, to our order of
approximation. Now

p= ﬁ—ﬁlemm—ﬁ2gmm”‘-
= p_(l_gmm)’

(54)

where ¢, is the mean strain tensor.
From (5.1) when there are no applied stresses and the temperature is raised by one
degree, we have}
K1€mm+ K38umt+ 13 = 0,
" (5.5)
K2gmm+KSemm+a15 = 0:

where k; = A;+3u;. Therefore, using (5.2)-(5.5), the volume coefficient of thermal
expansion for the mixture, g, is given by

1 _ _ _ _
ﬁ*(m{Ule(PU\'z—P2K3)+02K2(/’2K1“Pl’\'3)}~ (5.6)
1K2—K3

If we can determine the volume coefficient of thermal expansion for the mixture by
experiment, then knowing the properties of each solid we can calculate ;.

We now consider a further theoretical experiment, viz., the torsion of a cylinder con-
sisting of the above mixture. We choose cylindrical polar co-ordinate axes in the initial
body so that the z-axis lies along the axis of the cylinder, and so that the plane ends of the
cylinder are at z = +1. The cylinder has a circular cross-section of radius ¢ and we apply

t See [13], equation (8.4).

1 Note that similar equations (with different coefficients) still hold if the initial partial stresses are non-zero,
since the applied stresses are those over and above the initial stresses.
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equal and opposite couples at the plane ends by binding them to rigid plates and twisting.
We hold the cylinder in equilibrium keeping the curved surfaces stress-free. The deformation
is assumed to be pure torsion and the temperature remains constant throughout. Denoting
the cylindrical polar co-ordinates by (r, ¢, z), the initial and final co-ordinates of the
particles under consideration are given by

XD =XP=rcos¢p, XP=XP=rsing, X{P=XxXP=¢
= rcos(¢p+,z), x = rsin(p+y,2), x =z, (5.7
x$ = rcos(¢p+y,2), x$ = rsin(¢p +y,2), x§) =z

Examination of (4.2) and the equations of equilibrium with no body forcest (or the
corresponding equations in curvilinear co-ordinates, see [10]), using (5.7), reveals that ¥,
and ¥, must be constants. Further the only non-zero physical components of stress are

& = (o + s, 0% = (ua¥>+ sy,

.0
= U — 5(2)
- 6‘(1:z)’ = O’fl,z.

I
I

(5.8)

We assume that since the ends z = +/are fixed to rigid plates, the displacement of each
solid will be the same at these ends. From (5.7) we therefore see that i/, = i/, = ¥ say.
The totalf couple at each end of the cylinder is therefore given by

a
M= ZnJ (6ly+a)r? dr,
0

_ ma*(py +py + 2u3 0
2 9

(5.9)

using (5.8).

If we measure the angle of twist at the ends z = =+ of the cylinder in radians (= ¥),
and also measure the total couple at these ends needed to maintain this angle, then we can
calculate the constant p,.

By means of two theoretically simple experiments, therefore, we can determine all
three required material constants for the mixture, viz., the volume coefficient of thermal
expansion and the constants A,, u;.

Because of the nature of our assumptions at the start of this section, we see from (4.2)
that the diffusive force will be zero in equilibrium for the type of mixture we are considering.
If this state of affairs is not desirable, we can return to equations (4.2) instead of using (5.1)
and redefine constants A, u;, 4,, s, 43, A4, 3. We can then use the fact that the total
stress is zero initially to deduce that o, = —a,§, and therefore that A, —4; = «,. We can
therefore use the above two experiments in conjunction with one other experiment (for
example, compression at constant temperature with lateral expansion prevented) to deter-
mine the initial partial stress, the volume coefficient of thermal expansion for the mixture
and the constants 45, 44 and p5. In this case we assume that as, o6, g and a4 in (4.2) are
the original Lameé constants for each solid when separate, and the constants 2,, 4,. i, and
W, are suitably defined.

t See [7], equation (6.2).
1 The definition of total stress used here is that given by Green and Naghdi ((8] and [9]). Hill [2]. who con-

siders a mixture of two solids from a slightly different viewpoint, has a different definition of total stress.
§CI. [13], equation (8.12).
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In conclusion we remark briefly on the concept of effective moduli for the mixture.
These are the moduli appearing in the relation between total stress and some kind of total
strain, and previous authors have attempted to evaluate them or have evaluated bounds
for them (see, e.g. [1]1-{4]). The difficulty is in obtaining a linear relation between total
stress and total strain. This can be done by either taking a ‘‘representative volume” (see
Hill [2]) and assuming that the actual strains of each solid are uniquely related to the total
strain, or by assuming, for example, that the total surface force in equilibrium is uniquely
divided between each solid. Both approaches are essentially equivalent and enable one to
obtain the desired linear relationship, which will include the coefficients describing the
division of total strain or total surface force.

The concept of the total surface force being divided uniquely between the two solids
because of the nature of the surface of the mixture (bearing in mind that the mixture is
homogeneous initially) is an attractive one and apparently physically reasonable. However,
if we assume that in any mixture we can restrict the displacements of each solid to be equal
at the boundary by suitably applying boundary conditions (in other words construct a
particular displacement-boundary-value problem, also apparently reasonable), as has
been assumed already in this paper, then we are led to the conclusion that the coefficients
describing the division of total surface force (or total strain) have certain values independent
of the nature of the mixture.

To resolve this apparent paradox we suggest that the division of total surface force
may depend upon the nature of the boundary conditions.
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AGeTpakT—VICnonB3ysi TEOPHIO CMeceil, NONYCKAIOUIWX Pa3HBIE TEMMEPATYpPhl A KaXOOro COCTABHOTO
37leMeHTa, OOCYXKOaloTCAd CIEpBa HeJMHelHble OIpeneNsollNe YPABHEHNA HJI CMEChI, COCTOAINEH H3
IBYX yNpYrMX TBEpABIX Tesl. 3aTeM, B KaUeCTBE CHELMATILHOTO CIIy4asi, ONMpPEJESIOTCHS 3aBHMOTCH MEXIy
HEKOTODBIMH TIOCTOSHHBIMM MATEPHa/la, OTHECEHHBIMH K KaXJIOMY COCTaBHOMY 3JIEMEHTY M COOTBET-
CTBYIOIIMMH MOCTOSIHHBIMM, OTHECEHBIMM K CMecH. JIMHHAPU3YIOTCS ONpenesIolMe YPaBHEHAN , IPHHMAs
BO BHMMAHHE, YTO BCE INEPEMELIEHHs HeneOPMUPOBAHHOIO COCTOAIHMA M BCE NOCHEAYIOLME H3MECHCHUA
TeMIlepaTypbi—mMansl. Jlanee MOKa3aHO KaK OLEHHTb IOCTOSAHHbLIE, MOABJAIOIIHECA B IHHHADH30BAHHBIX
OTIpefeIsIOUIMX YPABHEHHSAX, IPH HEKOTOPBIX NPEANOIOKEHHAX.



